Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

A guide to reducing adverse outcomes in rabbit models of sciatic nerve injury.

  • Author(s): Orozco, Elisabeth;
  • Masuda, Koichi;
  • Shah, Sameer B
  • et al.
Abstract

Background

Peripheral nerve damage can have debilitating consequences. Rabbit sciatic nerve transection models allow the effective evaluation of surgical repair strategies for large nerve gaps. Despite advantages in size, ease of handling, and functional utility, rabbits can suffer from a number of side effects that affect animal welfare and the quality of scientific inquiry. Such side-effects, which include pressure ulcers and traumatic damage to the foot, are primarily a consequence of insensitivity of the distal hindlimb following sciatic nerve injury. In this study, we present a number of methodologies for identifying, treating, and preventing unintended adverse effects in rabbit sciatic nerve injury models.

Results

First, we categorize pressure ulcers according to their severity and describe the deployment of a padded bandaging technique to enable ulcer healing. We also introduce a proactive bandaging approach to reduce the likelihood of pressure ulcer formation. Second, we define phenotypes that distinguish between foot injuries resulting from self-mutilation (autotomy) from those caused by incidental traumatic injury secondary to sensori-motor damage. Finally, we detail an effective strategy to reduce the usage of Elizabethan collars; through a gradual weaning protocol, their usefulness in preventing autotomy is retained, while their propensity to impede rabbit grooming and cause abrasion-injury to the neck region is minimized.

Conclusions

We suggest that application of these methods offer a practical and systematic approach to avoid adverse side effects associated with rabbit sciatic nerve damage, enabling improved animal welfare and scientific outcomes in a powerful nerve injury model.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View