Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Specific anchoring of large topologically closed DNA for single-molecule protein:DNA interactions

Abstract

Single-molecule and bulk biophysical approaches to study protein-DNA interactions on surface-immobilized nucleic acid templates typically rely on modifying the ends of linear DNA molecules to enable surface-DNA attachments. Unless both strands are constrained, this results in topologically free DNA molecules and the inability to observe supercoiling-dependent biological processes or requires additional means to micromanipulate the free DNA end to impose rotational constraints or induce supercoiling. We developed a method using RecA protein to induce the formation of a circularized compliment-stabilized D-loop. The resulting joint molecule is topologically closed, surface anchorable, and stable under microfluidic flow. Importantly, the method obviates the need for subsequent manipulation of surface-tethered DNA; tethered molecules remain supercoiled and retain accessibility to DNA-binding proteins. This approach adds to the toolkit for those studying processes on DNA that require supercoiled DNA templates or topologically constrained systems.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View