Skip to main content
Open Access Publications from the University of California

Resolving Surface Rain from GMI High-Frequency Channels: Limits Imposed by the Three-Dimensional Structure of Precipitation.

  • Author(s): Guilloteau, Clément
  • Foufoula-Georgiou, Efi
  • Kummerow, Christian D
  • Petković, Veljko
  • et al.

The scattering of microwaves at frequencies between 50 and 200 GHz by ice particles in the atmosphere is an essential element in the retrieval of instantaneous surface precipitation from spaceborne passive radiometers. This paper explores how the variable distribution of solid and liquid hydrometeors in the atmospheric column over land surfaces affects the brightness temperature (TB) measured by GMI at 89 GHz through the analysis of Dual-Frequency Precipitation Radar (DPR) reflectivity profiles along the 89-GHz beam. The objective is to refine the statistical relations between observed TBs and surface precipitation over land and to define their limits. As GMI is scanning with a 53° Earth incident angle, the observed atmospheric volume is actually not a vertical column, which may lead to very heterogeneous and seemingly inconsistent distributions of the hydrometeors inside the beam. It is found that the 89-GHz TB is mostly sensitive to the presence of ice hydrometeors several kilometers above the 0°C isotherm, up to 10 km above the 0°C isotherm for the deepest convective systems, but is a modest predictor of the surface precipitation rate. To perform a precise mapping of atmospheric ice, the altitude of the individual ice clusters must be known. indeed, if variations in the altitude of ice are not accounted for, then the high incident angle of GMI causes a horizontal shift (parallax shift) between the estimated position of the ice clusters and their actual position. We show here that the altitude of ice clusters can be derived from the 89-GHz TB itself, allowing for correction of the parallax shift.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View