Skip to main content
eScholarship
Open Access Publications from the University of California

Computational studies of pH sensing design principles in proteins

  • Author(s): Garrido Ruiz, Diego
  • Advisor(s): Jacobson, Matt P
  • et al.
Abstract

Changes in pH are important regulatory signals for biological function, under physiological and pathological conditions. Recent advances in computer simulations strategies have made the exploration of the effects of charge titrations on protein function possible. In this work, I make use of these strategies to investigate the thermodynamic coupling between conformation and protonation states that give rise to pH-dependent function.

As motivation for the rest of the work, I start by presenting a collaborative investigation on a pH-sensing mutant of the EGFR tyrosine kinase common to a set of distinct cancers. From then, I reduce the complexity of the systems under study to build models where exact enumeration of states is possible to inquire about the nature of the couplings between protonation states and conformation. Finally, I discuss detailed simulations of pH-sensing proteins for which I use the expectations and insights generated with simple models to identify and interpret couplings of interest for pH-dependent behavior.

Main Content
Current View