Effect of carbon nanotube alignment on nanocomposite sensing performance
Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Effect of carbon nanotube alignment on nanocomposite sensing performance

  • Author(s): Lee, Bo Mi;
  • Huang, Zachary;
  • Loh, Kenneth J
  • et al.
Abstract

Abstract The objective of this study is to derive a numerical model of carbon nanotube (CNT)-based thin films that accurately reflect their electrical and electromechanical performance as observed through experimental tests. Although nanocomposites based on CNTs dispersed in polymer matrices have been studied extensively, their nanocomposite properties vary depending on CNT orientations. This study aimed to explain how differences in nanocomposite behavior could be revealed by numerical models considering different CNT alignment conditions. First, a percolation-based thin film model was generated by randomly dispersing CNT elements in a predefined two-dimensional domain. The degree of CNT alignment in the film was controlled by limiting the CNT elements’ maximum angle they make with respect to the film’s longitudinal axis. Then, numerical simulations on CNT-based film models were conducted. Second, multi-walled carbon nanotube (MWCNT)-epoxy films were prepared via drop casting. Alternating current was applied to the MWCNT-epoxy mixture before curing to prepare films with different degrees of CNT alignment. The electrical and electromechanical properties of these specimens were characterized, and the results were compared with simulations. Good agreement between experiments and simulations was observed.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View