Enzymatic processing of amelogenin during continuous crystallization of apatite
Published Web Location
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631549/Abstract
Dental enamel forms through a protein-controlled mineralization and enzymatic degradation with a nanoscale precision that new engineering technologies may be able to mimic. Recombinant full-length human amelogenin (rH174) and a matrix-metalloprotease (MMP-20) were employed in a pH-stat titration system that enabled a continuous supply of calcium and phosphate ions over several days, mimicking the initial stages of matrix processing and crystallization in enamel in-vitro. Effects on the self-assembly and crystal growth from a saturated aqueous solution containing 0.4 mg/ml rH174 and MMP-20 with the weight ratio of 1:1000 with respect to rH174 were investigated. A transition from nanospheres to fibrous amelogenin assemblies was facilitated under conditions that involved an interaction between rH174 and the proteolytic cleavage products. Despite continuous titration, the levels of calcium exhibited a consistent trend of decreasing, thereby indicating its possible role in the protein self-assembly. This study suggests that mimicking enamel formation in-vitro requires the synergy between the aspects of matrix self-assembly, proteolysis and crystallization.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.