- Main
Classical discrete time crystals
Published Web Location
https://doi.org/10.1038/s41567-019-0782-3Abstract
The spontaneous breaking of time-translation symmetry in periodically driven quantum systems leads to a new phase of matter: the discrete time crystal (DTC). This phase exhibits collective subharmonic oscillations that depend upon an interplay of non-equilibrium driving, many-body interactions and the breakdown of ergodicity. However, subharmonic responses are also a well-known feature of classical dynamical systems ranging from predator–prey models to Faraday waves and a.c.-driven charge density waves. This raises the question of whether these classical phenomena display the same rigidity characteristic of a quantum DTC. In this work, we explore this question in the context of periodically driven Hamiltonian dynamics coupled to a finite-temperature bath, which provides both friction and, crucially, noise. Focusing on one-dimensional chains, where in equilibrium any transition would be forbidden at finite temperature, we provide evidence that the combination of noise and interactions drives a sharp, first-order dynamical phase transition between a discrete time-translation invariant phase and an activated classical discrete time crystal (CDTC) in which time-translation symmetry is broken out to exponentially long timescales. Power-law correlations are present along a first-order line, which terminates at a critical point. We analyse the transition by mapping it to the locked-to-sliding transition of a d.c.-driven charge density wave. Finally, building upon results from the field of probabilistic cellular automata, we conjecture the existence of classical time crystals with true long-range order, where time-translation symmetry is broken out to infinite times.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-