Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Electronic Theses and Dissertations bannerUC Irvine

The seasonally varying ventilation of the ocean: a model-data synthesis

Abstract

This dissertation is a study of the climatological mean seasonal cycle of the ventilation of the ocean. Firstly, I have developed a computationally efficient 4-D variational assimilation system, called CYCLOCIM. It assimilates monthly mean temperature and salinity data from the World Ocean Atlas, transient CFC-11 and CFC-12, and natural radiocarbon measurements for the deep ocean from the GLODAPv2 database. CYCLOCIM is a new variational assimilation system that is specifically designed for the problem of estimating the climatological seasonal cycle of the residual mean circulation. I independently obtain the modeled overturning circulation, and the meridional heat and fresh water transport that largely agree with existing studies. Moreover, CYCLOCIM improves the model fit to the observation in the upper ocean compared to previous studies that ignored the seasonal cycle. The main product of the assimilation system is a set of 12 monthly data-constrained of tracer transport operators. I then calculate transit-time distribution (TTD) using the monthly transport operators to quantify ``Stommel's demon'', that is, the seasonality of the ventilation in the main thermocline. The study provides an accurate estimate of effective subduction and obduction months and maps of the water fraction in the main thermocline was last transported from or will be first transported back to the surface. For example, subduction occurs mainly in the Southern Ocean (64%), which lasts from June to November and peaks in September (21%) and October (20%). Moreover, the subduction happens in the North Pacific (12%) and the North Atlantic (16%), which lasts from January to April and peaks in March (15%). Obduction occurs mainly in ACC region (48%), which starts from April to November and peaks in August. The upwelling regions of the tropical ocean is the secondary primary obduction region, which upwell 35% of the water back to surface and lasts the whole year. Furthermore, I have applied the TTD method to estimate the ventilation of the deep water masses. The formation of NADW, AABW, PDW, IDW occurs mainly in the surface of the Southern Ocean (respectively, 15%, 69%, 56% and 53%) and the Atlantic Ocean (respectively, 84%, 39%, 37% and 41%) during winter and spring in both hemisphere.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View