Skip to main content
Download PDF
- Main
Improvements of the Weil bound for Artin-Schreier curves
- Author(s): Rojas-León, A
- Wan, D
- et al.
Published Web Location
https://doi.org/10.1007/s00208-010-0606-3Abstract
For the Artin-Schreier curve y - y = f(x) defined over a finite field F of q elements, the celebrated Weil bound for the number of F -rational points can be sharp, especially in super-singular cases and when r is divisible. In this paper, we show how the Weil bound can be significantly improved, using ideas from moment L-functions and Katz's work on ℓ-adic monodromy calculations. Roughly speaking, we show that in favorable cases (which happens quite often), one can remove an extra √q factor in the error term. © 2010 The Author(s). q q qr
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.