- Main
A real-world application of lane-guidance technologies - Automated snowblower
Abstract
This paper describes the development process and the initial field test results of an automated snowblower, focusing on one of the more difficult snow removal operations: blowing snow off the freeway alongside a guardrail without the snowblower touching the guardrail. The development process includes transforming this highway winter maintenance operation into a control problem, modeling a snowblower, designing control algorithms, devising a human-machine interface, and equipping a 20-ton snowblower with sensors and an actuator. Specific challenges include modeling the low-speed tire-induced oscillation, designing high-gain automatic control on front wheels while keeping rear steering under driver control, and implementing such a system under practical limitations. A new dynamic deflection tire model is incorporated into a bicycle model to account for the additional lateral dynamics. A low-order controller was first generated based on the understanding of the specific control problem and, then, refined and tuned iteratively using linear-matrix-inequality optimization. The initial winter field tests were successfully conducted with embedded magnetic markers along the guardrails installed on the shoulders of Interstate-80 in the Sierra Mountain region close to Donner Summit, CA, during the winter of 2005.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-