Skip to main content
eScholarship
Open Access Publications from the University of California

Dissociation between morphine-induced spinal gliosis and analgesic tolerance by ultra-low-dose α2-adrenergic and cannabinoid CB1-receptor antagonists.

  • Author(s): Grenier, Patrick
  • Wiercigroch, David
  • Olmstead, Mary C
  • Cahill, Catherine M
  • et al.
Abstract

Long-term use of opioid analgesics is limited by tolerance development and undesirable adverse effects. Paradoxically, spinal administration of ultra-low-dose (ULD) G-protein-coupled receptor antagonists attenuates analgesic tolerance. Here, we determined whether systemic ULD α2-adrenergic receptor (AR) antagonists attenuate the development of morphine tolerance, whether these effects extend to the cannabinoid (CB1) receptor system, and if behavioral effects are reflected in changes in opioid-induced spinal gliosis. Male rats were treated daily with morphine (5 mg/kg) alone or in combination with ULD α2-AR (atipamezole or efaroxan; 17 ng/kg) or CB1 (rimonabant; 5 ng/kg) antagonists; control groups received ULD injections only. Thermal tail flick latencies were assessed across 7 days, before and 30 min after the injection. On day 8, spinal cords were isolated, and changes in spinal gliosis were assessed through fluorescent immunohistochemistry. Both ULD α2-AR antagonists attenuated morphine tolerance, whereas the ULD CB1 antagonist did not. In contrast, both ULD atipamezole and ULD rimonabant attenuated morphine-induced microglial reactivity and astrogliosis in deep and superficial spinal dorsal horn. So, although paradoxical effects of ULD antagonists are common to several G-protein-coupled receptor systems, these may not involve similar mechanisms. Spinal glia alone may not be the main mechanism through which tolerance is modulated.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View