Skip to main content
eScholarship
Open Access Publications from the University of California

Role of Na+ Interstitials and Dopants in Enhancing the Na+ Conductivity of the Cubic Na3PS4 Superionic Conductor

  • Author(s): Zhu, Z
  • Chu, IH
  • Deng, Z
  • Ong, SP
  • et al.
Abstract

© 2015 American Chemical Society. In this work, we performed a first-principles investigation of the phase stability, dopant formation energy and Na+ conductivity of pristine and doped cubic Na3PS4 (c-Na3PS4). We show that pristine c-Na3PS4 is an extremely poor Na ionic conductor, and the introduction of Na+ excess is the key to achieving reasonable Na+ conductivities. We studied the effect of aliovalent doping of M4+ for P5+ in c-Na3PS4, yielding Na3+xMxP1-xS4 (M = Si, Ge, and Sn with x = 0.0625; M = Si with x = 0.125). The formation energies in all the doped structures with dopant concentration of x = 0.0625 are found to be relatively low. Using ab initio molecular dynamics simulations, we predict that 6.25% Si-doped c-Na3PS4 has a Na+ conductivity of 1.66 mS/cm, in excellent agreement with previous experimental results. Remarkably, we find that Sn4+ doping at the same concentration yields a much higher predicted Na+ conductivity of 10.7 mS/cm, though with a higher dopant formation energy. A higher Si4+ doping concentration of x = 0.125 also yields a significant increase in Na+ conductivity with an even higher dopant formation energy. Finally, topological and van Hove correlation function analyses suggest that the channel volume and correlation in Na+ motions may play important roles in enhancing Na+ conductivity in this structure.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View