Skip to main content
eScholarship
Open Access Publications from the University of California

Experimental cholelitholysis with the pulsed tunable dye laser

  • Author(s): Chang, BW
  • Pollock, ME
  • Eugene, J
  • Berns, MW
  • Mason, GR
  • et al.
Abstract

This study evaluates the pulsed tunable dye laser with wavelength 504 nm, frequency 10 Hz, and pulse width 1.2 μs for cholelitholysis. Power of 10-40 kW was directed through a 250-pm quartz fiber optic to ablate 55 gallstones (removed from 14 patients). The fiber was positioned in direct contact with the stones under saline. Power delivery was begun at 10 kW and increased in 10-kW increments until litholysis began. The range of power and energy necessary to fragment the gallstones was evaluated on four common bile ducts fresh autopsy specimens). Following fragmentation, all stones were analyzed. There were 35 cholesterol stones (3 calcified) and 20 bilirubin stones (4 calcified). Size ranged from 0.012 to 7.56 cm3(mean 0.96 ± 1.41 cm3). Energy necessary for fragmentation ranged from 0.4 to 11.2 J (exposure time 1.0-28 s). Power necessary for fragmentation was 20 kW for 2/55 stones and 40 kW for 53/55 stones. At 40 kW (40 mJ/pulse), common bile duct perforation occurred within 1.1 ± 0.1 s (0.44 ± 0.04 J). The pulsed tunable dye laser can fragment gallstones of all compositions. The threshold for fragmentation is 40 kW, but common bile duct perforation occurs at this power. We conclude that laser radiation sufficient to fragment gallstones can injure the common bile duct. © 1991 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View