Skip to main content
Open Access Publications from the University of California

Strong visible-light absorption and hot-carrier injection in TiO2/SrRuO3heterostructures

  • Author(s): Lee, S
  • Apgar, BA
  • Martin, LW
  • et al.

Correlated electron oxides prove a diverse landscape of exotic materials' phenomena and properties. One example of such a correlated oxide material is strontium ruthenate (SrRuO3) which is known to be a metallic itinerant ferromagnet and for its widespread utility as a conducting electrode in oxide heterostructures. We observe that the complex electronic structure of SrRuO3is also responsible for unexpected optical properties including high absorption across the visible spectrum (commensurate with a low band gap semiconductor) and remarkably low reflection compared to traditional metals. By coupling this material to a wide band gap semiconductor (TiO2) we demonstrate dramatically enhanced visible light absorption and large photocatalytic activities. The devices function by photo-excited hot-carrier injection from the SrRuO3to the TiO2and the effect is enhanced in thin films due to electronic structure changes. This observation provides an exciting new approach to the challenge of designing visible-light photosensitive materials. The correlated electron "metal" SrRuO3exhibits strong visible light absorption. Overlaid on the AM1.5G solar spectrum, it can be seen that SrRuO3absorbs more than 75 times more light than TiO2. The structural, chemical, and electronic compatibility of TiO2and SrRuO3further enables the fabrication of heterojunctions with exciting photovoltaic and photocatalytic response driven by hot-carrier injection. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View