Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Simultaneous quantum yield measurements of carbon uptake and oxygen evolution in microalgal cultures.

  • Author(s): Du, Niu
  • Gholami, Pardis
  • Kline, David I
  • DuPont, Christopher L
  • Dickson, Andrew G
  • Mendola, Dominick
  • Martz, Todd
  • Allen, Andrew E
  • Mitchell, B Greg
  • et al.
Abstract

The photosynthetic quantum yield (Φ), defined as carbon fixed or oxygen evolved per unit of light absorbed, is a fundamental but rarely determined biophysical parameter. A method to estimate Φ for both net carbon uptake and net oxygen evolution simultaneously can provide important insights into energy and mass fluxes. Here we present details for a novel system that allows quantification of carbon fluxes using pH oscillation and simultaneous oxygen fluxes by integration with a membrane inlet mass spectrometer. The pHOS system was validated using Phaeodactylum tricornutum cultured with continuous illumination of 110 μmole quanta m-2 s-1 at 25°C. Furthermore, simultaneous measurements of carbon and oxygen flux using the pHOS-MIMS and photon flux based on spectral absorption were carried out to explore the kinetics of Φ in P. tricornutum during its acclimation from low to high light (110 to 750 μmole quanta m-2 s-1). Comparing results at 0 and 24 hours, we observed strong decreases in cellular chlorophyll a (0.58 to 0.21 pg cell-1), Fv/Fm (0.71 to 0.59) and maximum ΦCO2 (0.019 to 0.004) and ΦO2 (0.028 to 0.007), confirming the transition toward high light acclimation. The Φ time-series indicated a non-synchronized acclimation response between carbon uptake and oxygen evolution, which has been previously inferred based on transcriptomic changes for a similar experimental design with the same diatom that lacked physiological data. The integrated pHOS-MIMS system can provide simultaneous carbon and oxygen measurements accurately, and at the time-resolution required to resolve high-resolution carbon and oxygen physiological dynamics.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View