Skip to main content
eScholarship
Open Access Publications from the University of California

Canine and Equine Mesenchymal Stem Cells Grown in Serum Free Media Have Altered Immunophenotype

  • Author(s): Clark, KC
  • Kol, A
  • Shahbenderian, S
  • Granick, JL
  • Walker, NJ
  • Borjesson, DL
  • et al.
Abstract

© 2015, The Author(s). Mesenchymal stem cell (MSC) therapy is being increasingly used to treat dogs and horses with naturally-occurring diseases. However these animals also serve as critical large animal models for ongoing translation of cell therapy products to the human market. MSC manufacture for clinical use mandates improvement in cell culture systems to meet demands for higher MSC numbers and removal of xeno-proteins (i.e. fetal bovine serum, FBS). While serum-free media (SFM) is commercially available, its affects on MSC phenotype and immunomodulatory functions are not fully known. The objective of this study was to determine if specific MSC culture conditions, MSC expansion in HYPERFlasks® or MSC expansion in a commercially available SFM, would alter MSC proliferation, phenotype or immunomodulatory properties in vitro. MSCs cultured in HYPERFlasks® were similar in phenotype, proliferative capacity and immunomodulatory functions to MSCs grown in standard flasks however MSC yield was markedly increased. HYPERFlasks® therefore provide a viable option to generate greater cell numbers in a streamlined manner. Canine and equine MSCs expanded in SFM displayed similar proliferation, surface phenotype and inhibitory effect on lymphocyte proliferation in vitro. However, MSCs cultured in the absence of FBS secreted significantly less PGE2, and were significantly less able to inhibit IFNγ secretion by activated T-cells. Immunomodulatory functions altered by expansion in SFM were species dependent. Unlike equine MSCs, in canine adipose-derived MSCs, the inhibition of lymphocyte proliferation was not principally modulated by PGE2. The removal of FBS from both canine and equine MSC culture systems resulted in altered immunomodulatory properties in vitro and warrants further investigation prior to moving towards FBS-free culture conditions.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View