Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Controlling electron beam-induced structure modifications and cation exchange in cadmium sulfide–copper sulfide heterostructured nanorods

Abstract

The atomic structure and interfaces of CdS/Cu2S heterostructured nanorods are investigated with the aberration-corrected TEAM 0.5 electron microscope operated at 80 kV and 300 kV applying in-line holography and complementary techniques. Cu2S exhibits a low-chalcocite structure in pristine CdS/Cu2S nanorods. Under electron beam irradiation the Cu2S phase transforms into a high-chalcocite phase while the CdS phase maintains its wurtzite structure. Time-resolved experiments reveal that Cu(+)-Cd(2+) cation exchange at the CdS/Cu2S interfaces is stimulated by the electron beam and proceeds within an undisturbed and coherent sulfur sub-lattice. A variation of the electron beam current provides an efficient way to control and exploit such irreversible solid-state chemical processes that provide unique information about system dynamics at the atomic scale. Specifically, we show that the electron beam-induced copper-cadmium exchange is site specific and anisotropic. A resulting displacement of the CdS/Cu2S interfaces caused by beam-induced cation interdiffusion equals within a factor of 3-10 previously reported Cu diffusion length measurements in heterostructured CdS/Cu2S thin film solar cells with an activation energy of 0.96 eV.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View