- Main
Multivariate and univariate analysis of energy balance data from lactating dairy cows
Published Web Location
https://doi.org/10.3168/jds.2014-8995Abstract
The objectives of the study were to develop a multivariate framework for analyzing energy balance data from lactating cows and investigate potential changes in maintenance requirements and partial efficiencies of energy utilization by lactating cows over the years. The proposed model accounted for the fact that metabolizable energy intake, milk energy output, and tissue energy balance are random variables that interact mutually. The model was specified through structural equations implemented in a Bayesian framework. The structural equations, along with a model traditionally used to estimate energetic parameters, were fitted to a large database of indirect calorimetry records from lactating cows. Maintenance requirements and partial efficiencies for both models were similar to values reported in the literature. In particular, the estimated parameters (with 95% credible interval in parentheses) for the proposed model were: net energy requirement for maintenance equal to 0.36 (0.34, 0.38) MJ/kg of metabolic body weight·day; the efficiency of utilizing dietary energy for milk production and tissue gain were 0.63 (0.61, 0.64) and 0.70 (0.68, 0.72), respectively; the efficiency of utilizing body stores for milk production was 0.89 (0.87, 0.91). Furthermore, additional analyses were conducted for which energetic parameters were allowed to depend on the decade in which studies were conducted. These models investigated potential changes in maintenance requirements and partial efficiencies over the years. Canonical correlation analysis was used to investigate the association between changes in energetic parameters with additional dietary and animal characteristics available in the database. For both models, net energy requirement for maintenance and the efficiency of utilizing dietary energy for milk production and tissue gain increased in the more recent decades, whereas the efficiency of utilizing body stores for milk production remained unchanged. The increase in maintenance requirements in modern milk production systems is consistent with the literature that describes increased fasting heat production in cows of higher genetic merit. The increase in utilization of dietary energy for milk production and tissue gain was partially attributed to the changes in dietary composition, in particular to the increase in dietary ether extract to levels closer to currently observed in modern milk production systems. Therefore, the estimated energetic parameters from this study can be used to update maintenance requirements and partial efficiencies of energy utilization in North American feeding systems for lactating cows.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-