Skip to main content
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

A role for 2-arachidonoylglycerol and endocannabinoid signaling in the locomotor response to novelty induced by olfactory bulbectomy.

  • Author(s): Eisenstein, Sarah A
  • Clapper, Jason R
  • Holmes, Philip V
  • Piomelli, Daniele
  • Hohmann, Andrea G
  • et al.

Bilateral olfactory bulbectomy (OBX) in rodents produces behavioral and neurochemical changes associated clinically with depression and schizophrenia. Most notably, OBX induces hyperlocomotion in response to the stress of exposure to a novel environment. We examined the role of the endocannabinoid system in regulating this locomotor response in OBX and sham-operated rats. In our study, OBX-induced hyperactivity was restricted to the first 3 min of the open field test, demonstrating the presence of novelty (0-3 min) and habituation (3-30 min) phases of the open field locomotor response. Levels of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide were decreased in the ventral striatum, a brain region deafferented by OBX, whereas cannabinoid receptor densities were unaltered. In sham-operated rats, 2-AG levels in the ventral striatum were negatively correlated with distance traveled during the novelty phase. Thus, low levels of 2-AG are reflected in a hyperactive open field response. This correlation was not observed in OBX rats. Conversely, 2-AG levels in endocannabinoid-compromised OBX rats correlated with distance traveled during the habituation phase. In OBX rats, pharmacological blockade of cannabinoid CB(1) receptors with either AM251 (1 mg kg(-1) i.p.) or rimonabant (1 mg kg(-1) i.p.) increased distance traveled during the habituation phase. Thus, blockade of endocannabinoid signaling impairs habituation of the hyperlocomotor response in OBX, but not sham-operated, rats. By contrast, in sham-operated rats, effects of CB(1) antagonism were restricted to the novelty phase. These findings suggest that dysregulation in the endocannabinoid system, and 2-AG in particular, is implicated in the hyperactive locomotor response induced by OBX. Our studies suggest that drugs that enhance 2-AG signaling, such as 2-AG degradation inhibitors, might be useful in human brain disorders modeled by OBX.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View