Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Stochastic model predictive control with joint chance constraints


This article investigates model predictive control (MPC) of linear systems subject to arbitrary (possibly unbounded) stochastic disturbances. An MPC approach is presented to account for hard input constraints and joint state chance constraints in the presence of unbounded additive disturbances. The Cantelli–Chebyshev inequality is used in combination with risk allocation to obtain computationally tractable but accurate surrogates for the joint state chance constraints when only the mean and variance of the arbitrary disturbance distributions are known. An algorithm is presented for determining the optimal feedback gain and optimal risk allocation by iteratively solving a series of convex programs. The proposed stochastic MPC approach is demonstrated on a continuous acetone–butanol–ethanol fermentation process, which is used in the production of biofuels.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View