GLOBAL WELL-POSEDNESS OF STRONG SOLUTIONS TO A TROPICAL CLIMATE MODEL
Skip to main content
eScholarship
Open Access Publications from the University of California

GLOBAL WELL-POSEDNESS OF STRONG SOLUTIONS TO A TROPICAL CLIMATE MODEL

Abstract

In this paper, we consider the Cauchy problem to the TROPIC CLIMATE MODEL derived by Frierson-Majda-Pauluis in [Comm. Math. Sci, Vol. 2 (2004)] which is a coupled system of the barotropic and the first baroclinic modes of the velocity and the typical midtropospheric temperature. The system considered in this paper has viscosities in the momentum equations, but no diffusivity in the temperature equation. We establish here the global well-posedness of strong solutions to this model. In proving the global existence of strong solutions, to overcome the difficulty caused by the absence of the diffusivity in the temperature equation, we introduce a new velocity $w$ (called the pseudo baroclinic velocity), which has more regularities than the original baroclinic mode of the velocity. An auxiliary function $\phi$, which looks like the effective viscous flux for the compressible Navier-Stokes equations, is also introduced to obtain the $L^\infty$ bound of the temperature. Regarding the uniqueness, we use the idea of performing suitable energy estimates at level one order lower than the natural basic energy estimates for the system.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View