Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Variations Between Dose-Ventilation and Dose-Perfusion Metrics in Radiation Therapy Planning for Lung Cancer

Abstract

Purpose

Currently, several active clinical trials of functional lung avoidance radiation therapy using different imaging modalities for ventilation or perfusion are underway. Patients with lung cancer often show ventilation-perfusion mismatch, whereas the significance of dose-function metric remains unclear. The aim of the present study was to compare dose-ventilation metrics with dose-perfusion metrics for radiation therapy plan evaluation.

Methods and materials

Pretreatment 4-dimensional computed tomography and 99mTc-macroaggregated albumin single-photon emission computed tomography perfusion images of 60 patients with lung cancer treated with radiation therapy were analyzed. Ventilation images were created using the deformable image registration of 4-dimensional computed tomography image sets and image analysis for regional volume changes as a surrogate for ventilation. Ventilation and perfusion images were converted into percentile distribution images. Analyses included Pearson's correlation coefficient and comparison of agreements between the following dose-ventilation and dose-perfusion metrics: functional mean lung dose and functional percent lung function receiving 5, 10, 20, 30, and 40 Gy (fV5, fV10, fV20, fV30, and fV40, respectively).

Results

Overall, the dose-ventilation metrics were greater than the dose-perfusion metrics (ie, fV20, 26.3% ± 9.9% vs 23.9% ± 9.8%). Correlations between the dose-ventilation and dose-perfusion metrics were strong (range, r = 0.94-0.97), whereas the agreements widely varied among patients, with differences as large as 6.6 Gy for functional mean lung dose and 11.1% for fV20. Paired t test indicated that the dose-ventilation and dose-perfusion metrics were significantly different.

Conclusions

Strong correlations were present between the dose-ventilation and dose-perfusion metrics. However, the agreement between the dose-ventilation and dose-perfusion metrics widely varied among patients, suggesting that ventilation-based radiation therapy plan evaluation may not be comparable to that based on perfusion. Future studies should elucidate the correlation of dose-function metrics with clinical pulmonary toxicity metrics.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View