Orbital magneto-optical response of periodic insulators from first principles
Skip to main content
eScholarship
Open Access Publications from the University of California

Orbital magneto-optical response of periodic insulators from first principles

  • Author(s): Lebedeva, IV
  • Strubbe, DA
  • Tokatly, IV
  • Rubio, A
  • et al.
Abstract

We present a reformulation of the density matrix perturbation theory for time-dependent electromagnetic fields under periodic boundary conditions, which allows us to treat the orbital magneto-optical response of solids at the ab initio level. The efficiency of the computational scheme proposed is comparable to standard linear-response calculations of absorption spectra and the results of tests for molecules and solids agree with the available experimental data. A clear signature of the valley Zeeman effect is revealed in the magneto-optical spectrum of a single layer of hexagonal boron nitride. The present formalism opens the path towards the study of magneto-optical effects in strongly driven low-dimensional systems.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View