Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Change in Plasma Cytokine Levels During Risperidone Treatment in Children with Autism

Abstract

Background

Atypical antipsychotics decrease irritability in autism. They also affect the cytokine network. Psychological stress, depression, and, possibly, autism spectrum disorder (ASD) are associated with the production of pro-inflammatory cytokines. We sought to determine if risperidone treatment led to changes in plasma cytokine levels.

Methods

Forty-five subjects from an open-label study of risperidone treatment of children and adolescents with ASD, ages 4-18 years, had an analysis of 27 different cytokines at baseline and after 8 weeks of treatment using multiplex assays (Millipore) and read on the Luminex 100(™) platform. We examined changes in each of the cytokine levels in the entire group, and also compared changes in cytokines in responders versus nonresponders.

Results

After 8 weeks of risperidone treatment, 2 of the 27 plasma cytokines showed statistically significant decreases in median levels: Eotaxin (p=0.0003) and monocyte chemoattractant protein-1 (MCP-1) (p=0.0024). Six of the 48 subjects met two criteria for responders to risperidone, and the median values of interleukin (IL)-5 were significantly higher (p=0.005) in the overall responder group than in nonresponders.

Conclusions

Two cytokines, eotaxin and MCP-1, which have previously been identified as abnormally elevated in children with autism, decreased during treatment with risperidone. This suggests a possible mechanism of action of risperidone treatment and a balancing of the immune system in affected subjects in this very preliminary study.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View