On the Virialization of Disk Winds: Implications for the Black Hole Mass Estimates in AGN
Skip to main content
Open Access Publications from the University of California

On the Virialization of Disk Winds: Implications for the Black Hole Mass Estimates in AGN

  • Author(s): Kashi, Amit
  • Proga, Daniel
  • Nagamine, Kentaro
  • Greene, Jenny
  • Barth, Aaron J
  • et al.

Estimating the mass of a supermassive black hole (SMBH) in an active galactic nucleus (AGN) usually relies on the assumption that the broad line region (BLR) is virialized. However, this assumption seems invalid in BLR models that consists of an accretion disk and its wind. The disk is likely Keplerian and therefore virialized. However, the wind material must, beyond a certain point, be dominated by an outward force that is stronger than gravity. Here, we analyze hydrodynamic simulations of four different disk winds: an isothermal wind, a thermal wind from an X-ray heated disk, and two line-driven winds, one with and the other without X-ray heating and cooling. For each model, we check whether gravity governs the flow properties, by computing and analyzing the volume-integrated quantities that appear in the virial theorem: internal, kinetic, and gravitational energies, We find that in the first two models, the winds are non-virialized whereas the two line-driven disk winds are virialized up to a relatively large distance. The line-driven winds are virialized because they accelerate slowly so that the rotational velocity is dominant and the wind base is very dense. For the two virialized winds, the so-called projected virial factor scales with inclination angle as $1/ \sin^2{i}$. Finally, we demonstrate that an outflow from a Keplerian disk becomes unvirialized more slowly when it conserves the gas specific angular momentum -- as in the models considered here, than when it conserves the angular velocity -- as in the so-called magneto-centrifugal winds.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View