Skip to main content
eScholarship
Open Access Publications from the University of California

Development of systemic immunity to glioblastoma multiforme using tumor cells genetically engineered to express the membrane-associated isoform of macrophage colony-stimulating factor

  • Author(s): Graf, MR
  • Jadus, MR
  • Hiserodt, JC
  • Wepsic, HT
  • Granger, GA
  • et al.
Creative Commons Attribution 4.0 International Public License
Abstract

We investigated the ability of Fischer rat T9 glioblastoma cells transduced with cDNA genes for the secreted (s) or membrane-associated (m) isoform of M-CSF to elicit an antitumor response when implanted into syngeneic animals. Intracranial (i.c.) implantation of 1 x 105 T9 cells expressing mM-CSF (T9/mM-CSF) resulted in 80% tumor rejection. Electron microscopy of the T9/mM-CSF tumor site, 2-4 days postimplantation, showed marked infiltration by macrophages, many of which were in physical contact with the T9/mM-CSF cells. Animals that rejected T9/mM-CSF cells were resistant to i.c. rechallenge with T9 cells, but not syngeneic MadB106 breast adenocarcinoma cells, suggesting that T9-specific immunity can be generated within the brain via the endogenous APCs. Intracranial injection of parental T9, vector control (T9/LXSN), or T9 cells secreting M-CSF (T9/sM-CSF) was 100% fatal. Subcutaneous injection of 1 x 107 T9/sM-CSF, T9/LXSN, or parental T9 cells resulted in progressive tumors. In contrast, T9/mM-CSF cells injected s.c. were destroyed in 7-10 days and animals developed systemic immunity to parental T9 cells. Passive transfer of CD3+ T cells from the spleens of immune rats into naive recipients transferred T9 glioma- specific immunity. In vitro, splenocytes from T9/mM-CSF-immunized rats specifically proliferated in response to various syngeneic glioma stimulator cells. However, only marginal T cell-mediated cytotoxicity was observed by these splenocytes in a CTL assay against T9 target cells, regardless of restimulation with T9 cells. Subcutaneous immunization with viable T9/mM-CSF cells was effective in eradicating i.c. T9 tumors.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View