Skip to main content
eScholarship
Open Access Publications from the University of California

Specifying neural crest cells: From chromatin to morphogens and factors in between.

  • Author(s): Rogers, Crystal D
  • Nie, Shuyi
  • et al.

Published Web Location

https://doi.org/10.1002/wdev.322
Abstract

Neural crest (NC) cells are a stem-like multipotent population of progenitor cells that are present in vertebrate embryos, traveling to various regions in the developing organism. Known as the "fourth germ layer", these cells originate in the ectoderm between the neural plate (NP), which will become the brain and spinal cord, and nonneural tissues that will become the skin and the sensory organs. NC cells can differentiate into more than 30 different derivatives in response to the appropriate signals including, but not limited to, craniofacial bone and cartilage, sensory nerves and ganglia, pigment cells, and connective tissue. The molecular and cellular mechanisms that control the induction and specification of NC cells include epigenetic control, multiple interactive and redundant transcriptional pathways, secreted signaling molecules, and adhesion molecules. NC cells are important not only because they transform into a wide variety of tissue types, but also because their ability to detach from their epithelial neighbors and migrate throughout developing embryos utilizes mechanisms similar to those used by metastatic cancer cells. In this review, we discuss the mechanisms required for the induction and specification of NC cells in various vertebrate species, focusing on the roles of early morphogenesis, cell adhesion, signaling from adjacent tissues, and the massive transcriptional network that controls the formation of these amazing cells. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Signaling Pathways > Cell Fate Signaling.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View