Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Rare Beryllium Icosahedra in the Intermediate Valence Compound CeBe13

Published Web Location

https://doi.org/10.1021/ja045861cCreative Commons 'BY' version 4.0 license
Abstract

Single-crystal X-ray diffraction experiments show that the Be atoms in CeBe13 form a Be12 icosahedra, which is a very unusual structural feature due, in part, to the remarkably low valence electron count of Be. Magnetization studies show that CeBe13 displays intermediate valence behavior, in which valence fluctuations between the Ce 4f0 and 4f1 states give rise to enhanced electronic specific heat and magnetic susceptibility. Calculations using ab initio theory were used to determine the electronic structure and bonding and to give insight into the relationship between the crystal structure, the bonding, and the intermediate valence behavior of CeBe13. The hybridization between the localized f electrons and the conduction electrons is responsible for the large values of the electronic specific heat coefficient (gamma approximately 100 mJ/mol K2) and magnetic susceptibility (chi approximately 1 x 10-3 emu/mol), which is in marked contrast to those of ordinary metals that have gamma approximately 1 mJ/mol K2 and chi approximately 1 x 10-5 emu/mol values. The magnetic susceptibility, chi = M/H versus T, of a single crystal of CeBe13 exhibits a broad maximum at Tmax approximately 130 K and is typical of intermediate valence systems with an unusually large energy scale (Kondo), TK approximately 500 K.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View