Skip to main content
eScholarship
Open Access Publications from the University of California

The Effect of Density-Dependence on Foraging Dominance between Two Pest Species

  • Author(s): Ross, James G.
  • Sam, Shona
  • et al.
Abstract

Possum numbers have been significantly reduced in many regions of New Zealand. However, research has indicated some unexpected consequences of possum control. At some sites, rat numbers have more than doubled 2 years after possum control. What this suggests is that the removal of a direct competitor has enabled a rapid increase in rat numbers relative to slower possum recovery. This has serious implications, as high rat numbers could inhibit ongoing possum ground control. To investigate this, an experimental trial was run where we tested the following research hypotheses by manipulating the rat density: i) Null hypothesis (H0) ‒ rat density has no influence on possum foraging behaviour around bait stations, ii) Alternative hypothesis (H1) ‒ rat density indirectly influences possum behaviour by removing all bait before possums can access it, and/or iii) Alternative hypothesis (H2) ‒ rat density directly influences possum behaviour by physically excluding them from bait stations. The experimental site was divided into 2 parts, a treatment block and a control (non-treatment) block. Rat control was undertaken using Victor® kill traps and 96 rats were removed over 6 nights (density estimated at 4.6 rats/ha). To quantify the effect of rat density on possum foraging behaviour, non-toxic bait stations were stapled to a tree every 10 m along 18 monitoring lines (n = 50). Possum behaviour was then monitored using both modified tracking cards and IR camera traps. Prior to trapping, 92% of all the baits were removed by rats on the first night. Following trapping, this reduced down to 8% in the treatment block. Rats turned up earlier than possums at the majority of the monitored sites (~1 hour before sunset). Before trapping, baits were only available 33% of the time when a possum visited a bait site (n = 15), and no baits were removed. After trapping, baits were available 100% of the time and 2 baits were removed by possums. These results support H1 and suggest that the smaller-bodied competitor can dominate food resources in NZ forests. This has the potential to make possum ground control more difficult when using control techniques that do not target rodents.

Main Content
Current View