Skip to main content
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Flag Hilbert schemes, colored projectors and Khovanov-Rozansky homology

  • Author(s): Gorsky, E
  • Neguţ, A
  • Rasmussen, J
  • et al.

We construct a categorification of the maximal commutative subalgebra of the type A Hecke algebra. Specifically, we propose a monoidal functor from the (symmetric) monoidal category of coherent sheaves on the flag Hilbert scheme to the (non-symmetric) monoidal category of Soergel bimodules. The adjoint of this functor allows one to match the Hochschild homology of any braid with the Euler characteristic of a sheaf on the flag Hilbert scheme. The categorified Jones-Wenzl projectors studied by Abel, Elias and Hogancamp are idempotents in the category of Soergel bimodules, and they correspond to the renormalized Koszul complexes of the torus fixed points on the flag Hilbert scheme. As a consequence, we conjecture that the endomorphism algebras of the categorified projectors correspond to the dg algebras of functions on affine charts of the flag Hilbert schemes. We define a family of differentials d on these dg algebras and conjecture that their homology matches that of the gl projectors, generalizing earlier conjectures of the first and third authors with Oblomkov and Shende. N N

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View