Skip to main content
eScholarship
Open Access Publications from the University of California

An evaluation of one-sided and two-sided communication paradigms on relaxed-ordering interconnect

  • Author(s): Ibrahim, KZ
  • Hargrove, PH
  • Iancu, C
  • Yelick, K
  • et al.
Abstract

The Cray Gemini interconnect hardware provides multiple transfer mechanisms and out-of-order message delivery to improve communication throughput. In this paper we quantify the performance of one-sided and two-sided communication paradigms with respect to: 1) the optimal available hardware transfer mechanism, 2) message ordering constraints, 3) per node and per core message concurrency. In addition to using Cray native communication APIs, we use UPC and MPI micro-benchmarks to capture one- and two-sided semantics respectively. Our results indicate that relaxing the message delivery order can improve performance up to 4.6x when compared with strict ordering. When hardware allows it, high-level one-sided programming models can already take advantage of message reordering. Enforcing the ordering semantics of two-sided communication comes with a performance penalty. Furthermore, we argue that exposing out-of-order delivery at the application level is required for the next-generation programming models. Any ordering constraints in the language specifications reduce communication performance for small messages and increase the number of active cores required for peak throughput. © 2014 IEEE.

Main Content
Current View