Skip to main content
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Electronic Theses and Dissertations bannerUC Santa Barbara

Understanding the Efficacy of Spatial Management on Emerging Threats


Spatial management is a popular tool for resource managers to protect and conserve natural resources. However, a number of emerging threats are testing the ability of these tools to address management needs. Marine protected areas and slow speed zones are popular tools employed by resource managers to mitigate anthropogenic threats; however climate change and whale ship strikes represent new threats that may complicate the benefits of these tools. This dissertation examines the efficacy of incentivizing slow vessel transits to reduce cetacean mortality risk and the application of MPAs to mitigate climate change.

A trial program to monetarily incentivize slow transits through the Santa Barbara Channel showed high compliance compared to a similar voluntary program. During incentivized transits, the large majority of ships maintained a 12 knot transit speed as determined by the program guidelines. An incentivized program may be key in reducing risk to whale mortality and reducing ships speeds; however scaling up this program may face financial difficulty.

Marine Protected Areas have been claimed to offer additional protection to areas affected by climate change. However, a recent warm water marine heatwave changed the fish community’s abundance, biodiversity, and recruitment around the Channel Islands. While the ecological community changes across strong longitudinal biogeographic patterns, forecasts built from GLMs with environmental conditions predict shifts in species abundance. Upwelling and cool waters coming to the surface may mitigate warming ocean conditions in the region but marine protected areas showed no increased resilience to acute climate affects like marine heatwaves.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View