Skip to main content
Download PDF
- Main
Near soliton evolution for equivariant Schrödinger maps in two spatial dimensions
Published Web Location
https://doi.org/10.1090/memo/1069Abstract
We consider the Schrödinger Map equation in 2 + 1 dimensions, with values into S2. This admits a lowest energy steady state Q, namely the stereographic projection, which extends to a two dimensional family of steady states by scaling and rotation. We prove that Q is unstable in the energy space H1. However, in the process of proving this we also show that within the equivariant class Q is stable in a stronger topology X ⊂ H 1. © 2013 by the American Mathematical Society. All rights reserved.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%