Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Increased LIGHT expression and activation of non-canonical NF-κB are observed in gastric lesions of MyD88-deficient mice upon Helicobacter felis infection

Abstract

Helicobacter pylori infection induces a number of pro-inflammatory signaling pathways contributing to gastric inflammation and carcinogenesis. Among those, NF-κB signaling plays a pivotal role during infection and malignant transformation of the gastric epithelium. However, deficiency of the adaptor molecule myeloid differentiation primary response 88 (MyD88), which signals through NF-κB, led to an accelerated development of gastric pathology upon H. felis infection, but the mechanisms leading to this phenotype remained elusive. Non-canonical NF-κB signaling was shown to aggravate H. pylori-induced gastric inflammation via activation of the lymphotoxin β receptor (LTβR). In the present study, we explored whether the exacerbated pathology observed in MyD88-deficient (Myd88-/-) mice was associated with aberrant activation of non-canonical NF-κB. Our results indicate that, in the absence of MyD88, H. felis infection enhances the activation of non-canonical NF-κB that is associated with increase in Cxcl9 and Icam1 gene expression and CD3+ lymphocyte recruitment. In addition, activation of signal transducer and activator of transcription 3 (STAT3) signaling was higher in Myd88-/- compared to wild type (WT) mice, indicating a link between MyD88 deficiency and STAT3 activation in response to H. felis infection. Thereby, MyD88 deficiency results in accelerated and aggravated gastric pathology induced by Helicobacter through activation of non-canonical NF-κB.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View