Skip to main content
Download PDF
- Main
Quantitative susceptibility mapping in combination with water-fat separation for simultaneous liver iron and fat fraction quantification
Published Web Location
https://doi.org/10.1007/s00330-017-5263-4Abstract
Purposes
To evaluate the feasibility of simultaneous quantification of liver iron concentration (LIC) and fat fraction (FF) using water-fat separation and quantitative susceptibility mapping (QSM).Methods
Forty-five patients suspected of liver iron overload (LIO) were included. A volumetric interpolated breath-hold examination sequence for QSM and FF, a fat-saturated gradient echo sequence for R2*, a spin echo sequence for LIC measurements and MRS analyses for FF (FF-MRS) were performed. Magnetic susceptibility and FF were calculated using a water-fat separation method (FF-MRI). Correlation and receiver operating characteristic analyses were performed.Results
Magnetic susceptibility showed strong correlation with LIC (rs=0.918). The optimal susceptibility cut-off values were 0.34, 0.63, 1.29 and 2.23 ppm corresponding to LIC thresholds of 1.8, 3.2, 7.0 and 15.0 mg/g dry weight. The area under the curve (AUC) were 0.948, 0.970, 1 and 1, respectively. No difference in AUC was found between susceptibility and R2* at all LIC thresholds. Correlation was found between FF-MRI and FF-MRS (R2=0.910).Conclusions
QSM has a high diagnostic performance for LIC quantification, similar to that of R2*. FF-MRI provides simultaneous fat quantification. Findings suggest QSM in combination with water-fat separation has potential value for evaluating LIO, especially in cases with coexisting steatosis.Key points
• Magnetic susceptibility showed strong correlation with LIC (r s =0.918). • QSM showed high diagnostic performance for LIC, similar to that of R 2* . • Simultaneously estimated FF-MRI showed strong correlation with MR-Spectroscopy-based FF (R 2 =0.910). • QSM combining water-fat separation has quantitative value for LIO with coexisted steatosis.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%