Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Engineering a High-Performance GPU B-Tree

Abstract

We engineer a GPU implementation of a B-Tree that supports concurrent queries (point, range, and successor) and updates (insertions and deletions). Our B-tree outperforms the state of the art, a GPU log-structured merge tree (LSM) and a GPU sorted array. In particular, point and range queries are significantly faster than in a GPU LSM (the GPU LSM does not implement successor queries). Furthermore, B-Tree insertions are also faster than LSM and sorted array insertions unless insertions come in batches of more than roughly 100k. Because we cache the upper levels of the tree, we achieve lookup throughput that exceeds the DRAM bandwidth of the GPU. We demonstrate that the key limiter of performance on a GPU is contention and describe the design choices that allow us to achieve this high performance.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View