Skip to main content
eScholarship
Open Access Publications from the University of California

Isolation and reactivity of trifluoromethyl iodonium salts

  • Author(s): Brantley, JN
  • Samant, AV
  • Toste, FD
  • et al.
Abstract

© 2016 American Chemical Society. The strategic incorporation of the trifluoromethyl (CF3) functionality within therapeutic or agrochemical agents is a proven strategy for altering their associated physicochemical properties (e.g., metabolic stability, lipophilicity, and bioavailability). Electrophilic trifluoromethylation has emerged as an important methodology for installing the CF3moiety onto an array of molecular architectures, and, in particular, CF3Λ3-iodanes have garnered significant interest because of their unique reactivity and ease of handling. Trifluoromethylations mediated by these hypervalent iodine reagents often require activation through an exogenous Lewis or Brønsted acid; thus, putative intermediates invoked in these transformations are cationic CF3iodoniums. These iodoniums have, thus far, eluded isolation and investigation of their innate reactivity (which has encouraged speculation that such species cannot be accessed). A more complete understanding of the mechanistic relevance of CF3iodoniums is paramount for the development of new trifluoromethylative strategies involving Λ3-iodanes. Here, we demonstrate that CF3iodonium salts are readily prepared from common Λ3-iodane precursors and exhibit remarkable persistence under ambient conditions. These reagents are competent electrophiles for a variety of trifluoromethylation reactions, and their reactivity is reminiscent of that observed when CF3iodanes are activated using Lewis acids. As such, our results suggest the mechanistic relevance of CF3iodonium intermediates in trifluoromethylative processes mediated by Λ3-iodanes. The isolation of CF3iodonium salts also presents the unique opportunity to employ them more generally as mechanistic probes.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View