- Main
Sequential Cascade Electrocatalytic Conversion of Carbon Dioxide to C–C Coupled Products
Published Web Location
https://doi.org/10.1021/acsaem.9b00791Abstract
Cascade catalytic processes perform multistep chemical transformations without isolating the intermediates. Here, we demonstrate a sequential cascade pathway to convert CO2 to C2+ hydrocarbons and oxygenates in a two-step electrocatalytic process using CO as the intermediate. CO2 to CO conversion is performed by using Ag, and further conversion of CO to C-C coupled products is performed with Cu. Temporal separation between the two reaction steps is accomplished by situating the Ag electrode upstream of the Cu electrode in a continuous flow reactor. Convection-diffusion simulations and experimental evaluation of the electrodes individually are performed to identify optimal conditions. With the upstream Ag electrode poised at -1 V versus reversible hydrogen electrode in a flow of CO2-saturated water in aqueous carbonate buffer, over 80% of the CO can be converted on the downstream Cu electrode. When the Ag electrode is on, a supersaturation of CO is achieved near the Cu electrode, which leads to a relative increase in the formation rate of C2 and C3 oxygenates as compared to ethylene.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-