Skip to main content
eScholarship
Open Access Publications from the University of California

Investigating Single Molecule Physics with the Scanning Tunneling Microscope

  • Author(s): Patel, Calvin Jay
  • Advisor(s): Ho, Wilson
  • et al.
Creative Commons Attribution 4.0 International Public License
Abstract

Scanning tunneling microscopy (STM) has given the scientific community a method to view, characterize, and manipulate the world at the atomic scale. Thirty years after the Nobel Prize in Physics was awarded for its invention, the remarkable instrument is still being used to deepen our understanding of physical and chemical processes. Tantamount to this has been the development of new techniques to expand its capabilities allowing STMs to answer increasingly more difficult scientific questions. This dissertation describes three technological thrusts in expanding the STMs capabilities in studying physics at the single molecule level.

First, I have helped developed a new technique called the RF-STM which has the potential to snapshot femtosecond and picosecond processes by locking into the high frequency tunneling component generated from the 80MHz laser pulse train. This technique solves the problem of low frequency thermal oscillations when choppers are used in the beam line and if only tunneling signal is monitored, sub-angstrom spatial resolution should be simultaneously possible.

Second, I have helped develop the itProbe technique by increasing its ability to map out the interaction potential energy surface (iPES) between a tip-CO molecule and a surface adsorbed molecule. I present a study conducted on the bridge-like 1,4 phenylene diisocyanide molecule where the iPES is probed at different heights and different energies. The result is an ability to 3-dimensionally map out the iPES and provide reliable insight into developing itProbe simulations.

Third, I have developed a new technique called Energy Resolved Laser Action STM (ERLA-STM) where we can observe the change in molecular dynamics as a function of the illumination wavelength. In our pyrrolidine study, we demonstrated the kinetic changes that occur when an overtone of the CH stretch mode is excited by a near-IR laser pulse. By sweeping the excitation energy, we can characterize and control single molecule switches for use in potential molecular electronics applications.

All three approaches mentioned above are driven by the goal of understanding chemical processes at the atomic level. Such studies are integral to increasing our fundamental knowledge and providing technological foundations for further development.

Main Content
Current View