- Main
Segregating two simultaneous sounds in elevation using temporal envelope: Human psychophysics and a physiological model.
Published Web Location
https://doi.org/10.1121/1.4922224Abstract
The ability to segregate simultaneous sound sources based on their spatial locations is an important aspect of auditory scene analysis. While the role of sound azimuth in segregation is well studied, the contribution of sound elevation remains unknown. Although previous studies in humans suggest that elevation cues alone are not sufficient to segregate simultaneous broadband sources, the current study demonstrates they can suffice. Listeners segregating a temporally modulated noise target from a simultaneous unmodulated noise distracter differing in elevation fall into two statistically distinct groups: one that identifies target direction accurately across a wide range of modulation frequencies (MF) and one that cannot identify target direction accurately and, on average, reports the opposite direction of the target for low MF. A non-spiking model of inferior colliculus neurons that process single-source elevation cues suggests that the performance of both listener groups at the population level can be accounted for by the balance of excitatory and inhibitory inputs in the model. These results establish the potential for broadband elevation cues to contribute to the computations underlying sound source segregation and suggest a potential mechanism underlying this contribution.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-