Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Multiple QTL for horticultural traits and quantitative resistance to Phytophthora infestans linked on Solanum habrochaites chromosome 11.

  • Author(s): Haggard, J Erron
  • Johnson, Emily B
  • St Clair, Dina A
  • et al.
Abstract

Previously, a Phytophthora infestans resistance QTL from Solanum habrochaites chromosome 11 was introgressed into cultivated tomato (S. lycopersicum). Fine mapping of this resistance QTL using near-isogenic lines (NILs) revealed some co-located QTL with undesirable effects on plant size, canopy density, and fruit size traits. Subsequently, higher-resolution mapping with sub-NILs detected multiple P. infestans resistance QTL within this 9.4-cM region of chromosome 11. In our present study, these same sub-NILs were also evaluated for 17 horticultural traits, including yield, maturity, fruit size and shape, fruit quality, and plant architecture traits in replicated field experiments over 2 years. The horticultural trait QTL originally detected by fine mapping each fractionated into two or more QTL at higher resolution. A total of 34 QTL were detected across all traits, with 14% exhibiting significant QTL × environment interactions (QTL × E). QTL for many traits were co-located, suggesting either pleiotropic effects or tight linkage among genes controlling these traits. Recombination in the pericentromeric region of the introgression between markers TG147 and At4g10050 was suppressed to approximately 29.7 Mbp per cM, relative to the genomewide average of 750 kbp per cM. The genetic architecture of many of the horticultural and P. infestans resistance traits that mapped within this chromosome 11 S. habrochaites region is complex. Complicating factors included fractionation of QTL, pleiotropy or tight linkage of QTL for multiple traits, pericentromeric chromosomal location(s), and/or QTL × E. High-resolution mapping of QTL in this region would be needed to determine which specific target QTL could be useful in breeding cultivated tomato.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View