- Main
A note on factorizations of finite groups
Abstract
In Question 19.35 of the Kourovka Notebook, M. H. Hooshmand asks whether, given a finite group $G$ and a factorization $\mathrm{card}(G)= n_1\ldots n_k$, one can always find subsets $A_1,\ldots,A_k$ of $G$ with $\mathrm{card}(A_i)=n_i$ such that $G=A_1\ldots A_k;$ equivalently, such that the group multiplication map $A_1\times\ldots\times A_k\to G$ is a bijection. We show that for $G$ the alternating group on 4 elements, $k=3$, and $(n_1,n_2,n_3) = (2,3,2)$, the answer is negative. We then generalize some of the tools used in our proof, and note an open question.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-