Skip to main content
eScholarship
Open Access Publications from the University of California

Enhanced anti-colon cancer immune responses with modified eEF2-derived peptides

  • Author(s): Sun, W
  • Wei, X
  • Niu, A
  • Ma, X
  • Li, JJ
  • Gao, D
  • et al.
Abstract

© 2015. Eukaryotic elongation factor-2 (eEF2) is overexpressed in many human cancers and is an attractive target for cancer immunotherapy. The eEF2 derived polypeptides have been shown to be able to induce cytotoxic T lymphocytes from healthy donor. Here, we demonstrate the evidence indicating that modification of a segment of peptides from wild type eEF2-derived immunogenic peptides is able to further enhance its capacity of inducing antigen-specific cytotoxic T lymphocytes (CTLs) against colon cancer cells. Using peptide-MHC binding algorithms, potential HLA-A2.1-restricted epitopes capable of inducing specific CD8+CTLs were identified. By analyzing HLA-A2.1 affinity and immunogenicity, we further identified one novel immunogenic peptide, P739-747 (RLMEPIYLV), that elicited specific CTL responses in HLA-A2.1/Kbtransgenic mice and culture with peripheral blood lymphocytes from colon cancer patients. Furthermore, replacing certain amino acids (at positions 1, 3, 7) within the P739-747 sequence improved the immunogenicity against eEF2. Several analogs containing the auxiliary HLA-A*0201 anchor residues were able to stably bind to HLA-A*0201 and enhance CTL responses compared with the native sequence; two of them showed increased anti-tumor effects during the adoptive immunotherapy in vivo. Thus, these results support that modified immunogenic analogs are promising candidates for peptide-based cancer vaccination and immunotherapy.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View