Skip to main content
eScholarship
Open Access Publications from the University of California

Enhanced anti-colon cancer immune responses with modified eEF2-derived peptides.

  • Author(s): Sun, Weihong
  • Wei, Xiaofang
  • Niu, Airong
  • Ma, Xuezhen
  • Li, Jian Jian
  • Gao, Daiqing
  • et al.
Abstract

Eukaryotic elongation factor-2 (eEF2) is overexpressed in many human cancers and is an attractive target for cancer immunotherapy. The eEF2 derived polypeptides have been shown to be able to induce cytotoxic T lymphocytes from healthy donor. Here, we demonstrate the evidence indicating that modification of a segment of peptides from wild type eEF2-derived immunogenic peptides is able to further enhance its capacity of inducing antigen-specific cytotoxic T lymphocytes (CTLs) against colon cancer cells. Using peptide-MHC binding algorithms, potential HLA-A2.1-restricted epitopes capable of inducing specific CD8(+) CTLs were identified. By analyzing HLA-A2.1 affinity and immunogenicity, we further identified one novel immunogenic peptide, P739-747 (RLMEPIYLV), that elicited specific CTL responses in HLA-A2.1/K(b) transgenic mice and culture with peripheral blood lymphocytes from colon cancer patients. Furthermore, replacing certain amino acids (at positions 1, 3, 7) within the P739-747 sequence improved the immunogenicity against eEF2. Several analogs containing the auxiliary HLA-A*0201 anchor residues were able to stably bind to HLA-A*0201 and enhance CTL responses compared with the native sequence; two of them showed increased anti-tumor effects during the adoptive immunotherapy in vivo. Thus, these results support that modified immunogenic analogs are promising candidates for peptide-based cancer vaccination and immunotherapy.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View