- Main
Gene expression patterns define key transcriptional events in cell-cycle regulation by cAMP and protein kinase A
Abstract
Although a substantial number of hormones and drugs increase cellular cAMP levels, the global impact of cAMP and its major effector mechanism, protein kinase A (PKA), on gene expression is not known. Here we show that treatment of murine wild-type S49 lymphoma cells for 24 h with 8-(4-chlorophenylthio)-cAMP (8-CPT-cAMP), a PKA-selective cAMP analog, alters the expression of approximate to 4,500 of approximate to 13,600 unique genes. By contrast, gene expression was unaltered in Kin(-) S49 cells (that lack PKA) incubated with 8-CPT-cAMP. Changes in mRNA and protein expression of several cell-cycle regulators accompanied cAMP-induced G(1)-phase cell-cycle arrest of wild-type S49 cells. Within 2 h, 8-CPT-cAMP altered expression of 152 genes that contain evolutionarily conserved cAMP-response elements within 5 kb of transcriptional start sites, including the circadian clock gene Per1. Thus, cAMP through its activation of PKA produces extensive transcriptional regulation in eukaryotic cells. These transcriptional networks include a primary group of cAMP-response element-containing genes and secondary networks that include the circadian clock.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-