Skip to main content
eScholarship
Open Access Publications from the University of California

Comparison of automated irrigation systems using an in vitro ureteroscopy model.

  • Author(s): Fedrigon, Donald
  • Alshara, Luay
  • Monga, Manoj
  • et al.
Abstract

INTRODUCTION:Two automated irrigation systems have been released for use during endoscopic procedures such as ureteroscopy: the Cogentix RocaFlow® (CRF) and Thermedx FluidSmart® (TFS). Accurate pressure control using automated systems may help providers maintain irrigation pressures within a safe range while also providing clear visualization. Our objective was to directly compare these systems based on their pressure accuracy, pressure-flow relationships, and fluid heating capabilities in order to help providers better utilize the temperature and pressure settings of each system. MATERIALS AND METHODS:An in vitro ureteroscopy model was used for testing, consisting of a short semirigid ureteroscope (6/7, 5F, 31cm Wolf 425612) connected to a continuous digital pressure transducer (Meriam m1550). Each system pressure output and flow-rate, via 100mL beaker filling time, was measured using multiple trials at pressure settings between 30 and 300mmHg. Output fluid temperature was monitored using a digital thermometer (Omega DP25-TH). RESULTS:The pressure output of both systems exceeded the desired setting across the entire tested range, a difference of 15.7±2.4mmHg for the TFS compared to 5.2±1.5mmHg for the CRF (p < 0.0001). Related to this finding, the TFS also had slightly higher flow rates across all trials (7±2mL/min). Temperature testing revealed a similar maximum temperature of 34.0⁰C with both systems, however, the TFS peaked after only 8 minutes and started to plateau as early as 4-5 minutes into the test, while the CRF took over 18 minutes to reach a similar peak. CONCLUSIONS:Our in vitro ureteroscopy testing found that the CRF system had better pressure accuracy than the TFS system but with noticeably slower fluid heating capabilities. Each system provided steady irrigation at safe pressures within their expected operating parameters with small differences in performance that should not limit their ability to provide steady irrigation at safe pressures.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View