Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Blood glucose turnover during high- and low-intensity exercise

Abstract

We hypothesized that whole body glucose uptake (Rd) during exercise is not related in a simple, linear manner to O2 uptake (VO2). To test this, seven healthy male subjects (age range 23-34 yr) were studied in the postabsorptive but not glycogen-depleted state. Three conditions were examined: 1) rest, 2) 40 min of constant exercise in which the work rates were carefully chosen to consist of low-intensity exercise (no elevated blood lactate, a mean of 40% maximal VO2), and 3) 40 min of high-intensity exercise (markedly elevated blood lactate, 79% maximal VO2). Gas exchange was measured breath by breath, and glucose uptake and production were measured using [6,6-2H2]glucose. Low-intensity exercise (n = 7) resulted in a small but not statistically significant increase in mean Rd [3.06 +/- 0.37 (SE) mg.min-1.kg-1] compared with resting values (2.87 +/- 0.39 mg.min-1.kg-1) despite a fourfold increase in the production of CO2 and VO2. By contrast, the high-intensity exercise Rd (n = 5, 6.98 +/- 0.67 mg.min-1.kg-1) was significantly greater than the resting value (3.03 +/- 0.56 mg.min-1.kg-1). Results of glucose production were virtually the same. Similarly, mean levels of epinephrine and norepinephrine increased significantly above resting values during high- but not low-intensity exercise. Our data demonstrate that whole body glucose dynamics and regulation during 40 min of exercise do not change in a simple linear manner with respect to metabolic rate.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View