Skip to main content
Open Access Publications from the University of California

Sequential Design for Gaussian Process Surrogates in Noisy Level Set Estimation

  • Author(s): Lyu, Xiong
  • Advisor(s): Ludkovski, Mike
  • et al.

We consider the problem of learning the level set for which a noisy black-box function exceeds a given threshold. To efficiently reconstruct the level set, we investigate Gaussian process (GP) metamodels and sequential design frameworks. Our focus is on strongly stochastic samplers, in particular with heavy-tailed simulation noise and low signal-to-noise ratio. We introduce the use of four GP-based metamodels in level set estimation that are robust to noise misspecification, and evaluate the performance of them. In conjunction with these metamodels, we develop several acquisition functions for guiding the sequential experimental designs, extending existing stepwise uncertainty reduction criteria to the stochastic contour-finding context. This also motivates our development of (approximate) updating formulas to efficiently compute such acquisition functions for the proposed metamodels. To expedite sequential design in stochastic experiments, we also develop adaptive batching designs, which are natural extensions of sequential design heuristics with the benefit of replication growing as response features are learned, inputs concentrate, and the metamodeling overhead rises. We develop four novel schemes that simultaneously or sequentially determine the sequential design inputs and the respective number of replicates. Our schemes are benchmarked by using synthetic examples and an application in quantitative finance (Bermudan option pricing).

Main Content
Current View