Skip to main content
eScholarship
Open Access Publications from the University of California

Interacting invariants for Floquet phases of fermions in two dimensions

  • Author(s): Fidkowski, L
  • Po, HC
  • Potter, AC
  • Vishwanath, A
  • et al.
Abstract

We construct a many-body quantized invariant that sharply distinguishes among two-dimensional nonequilibrium driven phases of interacting fermions. This is an interacting generalization of a band-structure Floquet quasienergy winding number and describes chiral pumping of quantum information along the edge. In particular, our invariant sharply distinguishes between a trivial and anomalous Floquet Anderson insulator in the interacting, many-body localized setting. It also applies more generally to models where only fermion parity is conserved, where it differentiates between trivial models and ones that pump Kitaev Majorana chains to the boundary, such as ones recently introduced in the context of emergent fermions arising from eigenstate Z2 topological order. We evaluate our invariant for the edge of such a system with eigenstate Z2 topological order, and show that it is necessarily nonzero when the Floquet unitary exchanges electric and magnetic excitations, proving a connection between bulk anyonic symmetry and edge chirality that was recently conjectured.

Main Content
Current View