Skip to main content
eScholarship
Open Access Publications from the University of California

Design, challenge, and promise of stimuli-responsive nanoantibiotics.

  • Author(s): Edson, Julius A
  • Kwon, Young Jik
  • et al.
Abstract

Over the past few years, there have been calls for novel antimicrobials to combat the rise of drug-resistant bacteria. While some promising new discoveries have met this call, it is not nearly enough. The major problem is that although these new promising antimicrobials serve as a short-term solution, they lack the potential to provide a long-term solution. The conventional method of creating new antibiotics relies heavily on the discovery of an antimicrobial compound from another microbe. This paradigm of development is flawed due to the fact that microbes can easily transfer a resistant mechanism if faced with an environmental pressure. Furthermore, there has been some evidence to indicate that the environment of the microbe can provide a hint as to their virulence. Because of this, the use of materials with antimicrobial properties has been garnering interest. Nanoantibiotics, (nAbts), provide a new way to circumvent the current paradigm of antimicrobial discovery and presents a novel mechanism of attack not found in microbes yet; which may lead to a longer-term solution against drug-resistance formation. This allows for environment-specific activation and efficacy of the nAbts but may also open up and create new design methods for various applications. These nAbts provide promise, but there is still ample work to be done in their development. This review looks at possible ways of improving and optimizing nAbts by making them stimuli-responsive, then consider the challenges ahead, and industrial applications.Graphical abstractA graphic detailing how the current paradigm of antibiotic discovery can be circumvented by the use of nanoantibiotics.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View