Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Hydrographic features and seabird foraging in Aleutian Passes

Abstract

Strong tidal currents crossing over the abrupt topography of the Aleutian Passes result in regions with high horizontal property gradients. These frontal regions vary with the tidal cycle and form the boundary between vertically mixed and stratified regions. Concentrations of seabirds were associated with convergence zones in the mixed water (MW) and with the front between North Pacific (NP) water and MW. Species that were foraging by picking at prey from the surface were associated with surface convergences that appeared to be associated with Langmuir circulation cells or tidal features (all fulmar aggregations) in the central passes (Samalga, Seguam). In contrast, sub-surface foraging puffins and small alcids were mostly observed in areas of turbulent, well-mixed water near the shallow regions of the passes. Short-tailed shearwater flocks that were plunge-diving for prey were associated with the front between the NP water and MW in the passes. On our transects, we observed no significant aggregations of seabirds associated with Bering Sea water or NP water away from the frontal zones. The interaction of strong currents with bathymetric features results in zones of vertical advection, mixing, and surface convergences that make island passes attractive foraging regions for seabirds. Deep passes lacking these features, such as many of the passes in the western Aleutian Archipelago, are not as likely to facilitate trophic transfer to top predators as shallow passes, such as those found in the eastern Aleutian Islands. © 2005 Blackwell Publishing Ltd.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View